Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N,N-Dimethyl-3-oxo-3-(thiophen-2-yl)propanaminium chloride

A. S. Dayananda,^a Jerry P. Jasinski,^b* James A. Golen,^b H. S. Yathirajan^a and B. Narayana^c

^aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, ^bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and ^cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, 574 199, India Correspondence e-mail: jjasinski@keene.edu

Received 1 August 2011; accepted 2 August 2011

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; R factor = 0.038; wR factor = 0.097; data-to-parameter ratio = 28.5.

In the title molecular salt, $C_9H_{14}NOS^+ \cdot Cl^-$, the crystal packing is stabilized by weak intermolecular $N-H \cdot \cdot \cdot Cl$, $C-H \cdot \cdot \cdot Cl$ and $C-H \cdot \cdot \pi$ interactions, which lead to the formation of a two-dimensional supramolecular layer which stacks along the *b* axis.

Related literature

For the management of major depressive disorders, see: Gupta *et al.* (2007). For the dual re-uptake inhibitor drug, duloxetine [systematic name (+)-(S)-N-methyl-3-(naphthalen-1-yloxy)-3-(thiophen-2-yl)propan-1-amine], see: Waitekus & Kirkpatrick, (2004). For related structures, see: Bhadbhade *et al.* (2009); Tao *et al.* (2006, 2008).

b = 27.0109 (9) Å

c = 7.1385 (4) Å

 $\beta = 110.767 \ (6)^{\circ}$

V = 1057.63 (9) Å³

Experimental

Crystal data C₉H₁₄NOS⁺·Cl⁻ $M_r = 219.72$ Monoclinic, $P2_1/n$ a = 5.8663 (3) Å

Z = 4Mo $K\alpha$ radiation $\mu = 0.52 \text{ mm}^{-1}$

Data collection

Oxford Diffraction Xcalibur Eos Gemini diffractometer Absorption correction: multi-scan (*CrysAlis RED*; Oxford Diffraction, 2010) $T_{\rm min} = 0.885, T_{\rm max} = 0.945$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.097$ S = 1.133538 reflections 124 parameters 1 restraint

14443 measured reflections 3538 independent reflections 3290 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.033$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.37 \text{ e } \text{\AA}^{-3} \\ &\Delta\rho_{min}=-0.28 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the S1/C1-C4 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1N \cdots Cl1$ $C1 - H1A \cdots Cl1^{i}$ $C6 - H6A \cdots Cg1^{ii}$	0.87 (1) 0.95 0.99	2.17 (1) 2.82 2.97	3.0317 (11) 3.5641 (13) 3.8183 (13)	171 (2) 136 144

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) $x - \frac{3}{2}, -y - \frac{1}{2}, z - \frac{3}{2}$.

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2010); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis RED* (Oxford Diffraction, 2010); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

ASD thanks the University of Mysore for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2775).

References

- Bhadbhade, M., Hook, J., Marjo, C., Rich, A. & Lin, Q. (2009). Acta Cryst. E65, 02294.
- Gupta, S., Nihalani, N. & Masand, P. (2007). Ann. Clin. Psychiatry, 19, 125–132. Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tao, X., Bin, X., Zhu, H.-J., Yuan, L. & Wang, J.-T. (2006). Acta Cryst. E62, o5202–o5203.
- Tao, X., Zhang, X.-Q., Yuan, L. & Wang, J.-T. (2008). Acta Cryst. E64, 0553. Waitekus, A. B. & Kirkpatrick, P. (2004). Nat. Rev. Drug Discov. 3, 907–908.

 $0.24 \times 0.21 \times 0.11 \text{ mm}$

T = 173 K

supplementary materials

Acta Cryst. (2011). E67, o2271 [doi:10.1107/S1600536811031199]

N,N-Dimethyl-3-oxo-3-(thiophen-2-yl)propanaminium chloride

A. S. Dayananda, J. P. Jasinski, J. A. Golen, H. S. Yathirajan and B. Narayana

Comment

The title salt, (I), $C_9H_{14}NOS^+$, Cl⁻, is an intermediate in the synthesis of duloxetine, which is a new generation drug indicated for the management of major depressive disorders as well as for neuropathic pain (Waitekus & Kirkpatrick, 2004). Duloxetine is a dual re-uptake inhibitor with actions on serotonin as well as norepinephrine (Gupta *et al.*, 2007). The crystal structures of related structures, (*R*)-3-hydroxy-*N*,*N*-dimethyl-3-(2-thienyl)-propanamine (Tao *et al.*, 2006), *N*,*N*-dimethyl-3-(1-naphthyloxy)-3-(2-thienyl)propan-1-amine (Tao *et al.*, 2008) and duloxetine hydrochloride (Bhadbhade *et al.*, 2009) have been reported. In view of the importance of duloxetine, the crystal structure of the title compound, (I), is reported.

In the molecular salt, $C_9H_{14}NOS^+$, CI^- , one cation-anion pair makes up the asymmetric unit (Fig. 1). The crystal packing is stabilized by weak N—H···Cl, C—H···Cl and C—H..*Cg* π -ring intermolecular interactions (Table 1) forming a 2-D supramolecular layer which stacks along the *b* axis (Fig. 2).

Experimental

The title compound was obtained as a gift sample from *R*. *L*. Fine chem., Bangalore. X-ray quality crystals were obtained from slow evaporation of methanol solution (M.pt.: 451–454 K).

Refinement

The N—H atom was located from a difference Fourier map and refined with N—H = 0.87 ± 0.02 Å, and with $U_{iso}(H) = 1.19U_{eq}(N)$. All of the remaining H atoms were placed in their calculated positions and then refined using the riding model with C—H lengths of 0.95 Å (CH), 0.99 Å (CH₂) or 0.98 Å (CH₃). The isotropic displacement parameters for these atoms were set to 1.20 (CH), 1.19 (CH₂) or 1.49–1.51 (CH₃) times U_{eq} of the parent atom.

Figures

Fig. 1. Molecular structure of the ion pair in the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids.

Fig. 2. Packing diagram of the title compound viewed down the *a* axis. Dashed lines indicate weak N—H···Cl and C—H···Cl intermolecular interactions forming a 2-D supramolecular layer which stacks along the *b* axis.

N,N-Dimethyl-3-oxo-3-(thiophen-2-yl)propanaminium chloride

Crystal data

$C_9H_{14}NOS^+ \cdot Cl^-$	F(000) = 464
$M_r = 219.72$	$D_{\rm x} = 1.380 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 6745 reflections
a = 5.8663 (3) Å	$\theta = 3.1 - 32.2^{\circ}$
b = 27.0109 (9) Å	$\mu = 0.52 \text{ mm}^{-1}$
c = 7.1385 (4) Å	T = 173 K
$\beta = 110.767 \ (6)^{\circ}$	Block, colorless
$V = 1057.63 (9) \text{ Å}^3$	$0.24 \times 0.21 \times 0.11 \text{ mm}$
Z = 4	

Data collection

Oxford Diffraction Xcalibur Eos Gemini diffractometer	3538 independent reflections
Radiation source: Enhance (Mo) X-ray Source	3290 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.033$
Detector resolution: 16.1500 pixels mm ⁻¹	$\theta_{\text{max}} = 32.3^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
ω scans	$h = -8 \rightarrow 8$
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010)	$k = -39 \rightarrow 40$
$T_{\min} = 0.885, T_{\max} = 0.945$	$l = -10 \rightarrow 10$

14443 measured reflections

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.038$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.097$	$w = 1/[\sigma^2(F_o^2) + (0.0412P)^2 + 0.4408P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.13	$(\Delta/\sigma)_{\rm max} = 0.003$
3538 reflections	$\Delta \rho_{max} = 0.37 \text{ e } \text{\AA}^{-3}$
124 parameters	$\Delta \rho_{min} = -0.28 \text{ e} \text{ Å}^{-3}$
1 restraint	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}

Primary atom site location: structure-invariant direct Extinction coefficient: 0.0190 (18)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.52202 (6)	0.201976 (12)	0.22248 (5)	0.02281 (9)
Cl1	0.25260 (7)	0.437297 (12)	0.73047 (5)	0.02698 (10)
O1	0.59639 (18)	0.31119 (4)	0.23658 (16)	0.0269 (2)
N1	0.1628 (2)	0.42989 (4)	0.28618 (16)	0.0202 (2)
H1N	0.185 (3)	0.4283 (6)	0.413 (2)	0.024*
C1	0.3315 (2)	0.15653 (5)	0.24400 (19)	0.0232 (2)
H1A	0.3584	0.1222	0.2307	0.028*
C2	0.1360 (2)	0.17494 (5)	0.2825 (2)	0.0232 (2)
H2A	0.0125	0.1549	0.3008	0.028*
C3	0.1380 (2)	0.22742 (4)	0.29226 (19)	0.0200 (2)
H3A	0.0157	0.2465	0.3172	0.024*
C4	0.3377 (2)	0.24739 (4)	0.26137 (17)	0.0176 (2)
C5	0.4056 (2)	0.29935 (4)	0.25738 (17)	0.0183 (2)
C6	0.2273 (2)	0.33779 (4)	0.27755 (18)	0.0193 (2)

supplementary materials

H6A	0.0631	0.3312	0.1780	0.023*
H6B	0.2174	0.3358	0.4129	0.023*
C7	0.3098 (2)	0.38907 (4)	0.24408 (19)	0.0209 (2)
H7A	0.4826	0.3934	0.3311	0.025*
H7B	0.3006	0.3918	0.1033	0.025*
C8	-0.1028 (3)	0.42606 (5)	0.1722 (2)	0.0301 (3)
H8A	-0.1859	0.4550	0.2009	0.045*
H8B	-0.1665	0.3959	0.2118	0.045*
H8C	-0.1313	0.4248	0.0284	0.045*
C9	0.2585 (3)	0.47836 (5)	0.2479 (2)	0.0278 (3)
H9A	0.1668	0.5052	0.2806	0.042*
H9B	0.2405	0.4806	0.1063	0.042*
H9C	0.4313	0.4812	0.3315	0.042*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.01902 (15)	0.02573 (16)	0.02610 (16)	0.00399 (11)	0.01097 (12)	-0.00015 (11)
Cl1	0.03912 (19)	0.02268 (15)	0.02328 (15)	-0.00231 (12)	0.01617 (13)	-0.00105 (11)
01	0.0213 (4)	0.0274 (5)	0.0360 (5)	-0.0029 (4)	0.0150 (4)	-0.0012 (4)
N1	0.0250 (5)	0.0182 (4)	0.0199 (5)	-0.0021 (4)	0.0109 (4)	-0.0013 (4)
C1	0.0259 (6)	0.0205 (5)	0.0226 (6)	0.0040 (4)	0.0078 (5)	0.0007 (4)
C2	0.0221 (6)	0.0213 (5)	0.0265 (6)	-0.0012 (4)	0.0090 (5)	0.0012 (5)
C3	0.0169 (5)	0.0199 (5)	0.0243 (5)	0.0010 (4)	0.0086 (4)	0.0001 (4)
C4	0.0149 (5)	0.0197 (5)	0.0174 (5)	0.0016 (4)	0.0050 (4)	0.0003 (4)
C5	0.0173 (5)	0.0221 (5)	0.0156 (5)	-0.0002 (4)	0.0060 (4)	-0.0002 (4)
C6	0.0187 (5)	0.0196 (5)	0.0209 (5)	-0.0008 (4)	0.0086 (4)	0.0006 (4)
C7	0.0228 (5)	0.0200 (5)	0.0234 (5)	-0.0008 (4)	0.0126 (5)	-0.0007 (4)
C8	0.0240 (6)	0.0232 (6)	0.0421 (8)	0.0012 (5)	0.0106 (6)	-0.0032 (5)
C9	0.0377 (7)	0.0177 (5)	0.0315 (7)	-0.0056 (5)	0.0167 (6)	-0.0020 (5)

Geometric parameters (Å, °)

S1—C1	1.7032 (14)	C4—C5	1.4620 (16)
S1—C4	1.7216 (12)	C5—C6	1.5165 (16)
O1—C5	1.2224 (15)	C6—C7	1.5139 (16)
N1—C8	1.4834 (18)	С6—Н6А	0.9900
N1—C9	1.4876 (16)	С6—Н6В	0.9900
N1—C7	1.4947 (16)	С7—Н7А	0.9900
N1—H1N	0.870 (13)	С7—Н7В	0.9900
C1—C2	1.3647 (18)	C8—H8A	0.9800
C1—H1A	0.9500	C8—H8B	0.9800
C2—C3	1.4191 (17)	C8—H8C	0.9800
C2—H2A	0.9500	С9—Н9А	0.9800
C3—C4	1.3769 (16)	С9—Н9В	0.9800
С3—НЗА	0.9500	С9—Н9С	0.9800
C1—S1—C4	91.69 (6)	С7—С6—Н6А	109.7
C8—N1—C9	110.60 (11)	С5—С6—Н6А	109.7

C8—N1—C7	114.01 (10)	С7—С6—Н6В	109.7
C9—N1—C7	109.27 (10)	С5—С6—Н6В	109.7
C8—N1—H1N	108.0 (12)	Н6А—С6—Н6В	108.2
C9—N1—H1N	107.8 (11)	N1—C7—C6	113.80 (9)
C7—N1—H1N	106.8 (11)	N1—C7—H7A	108.8
C2—C1—S1	112.38 (10)	С6—С7—Н7А	108.8
C2—C1—H1A	123.8	N1—C7—H7B	108.8
S1—C1—H1A	123.8	С6—С7—Н7В	108.8
C1—C2—C3	112.40 (11)	H7A—C7—H7B	107.7
C1—C2—H2A	123.8	N1—C8—H8A	109.5
С3—С2—Н2А	123.8	N1—C8—H8B	109.5
C4—C3—C2	112.10 (11)	H8A—C8—H8B	109.5
С4—С3—НЗА	124.0	N1—C8—H8C	109.5
С2—С3—НЗА	124.0	H8A—C8—H8C	109.5
C3—C4—C5	129.24 (11)	H8B—C8—H8C	109.5
C3—C4—S1	111.43 (9)	N1—C9—H9A	109.5
C5—C4—S1	119.33 (9)	N1—C9—H9B	109.5
O1—C5—C4	121.40 (11)	Н9А—С9—Н9В	109.5
O1—C5—C6	121.64 (11)	N1—C9—H9C	109.5
C4—C5—C6	116.96 (10)	Н9А—С9—Н9С	109.5
C7—C6—C5	109.97 (9)	Н9В—С9—Н9С	109.5
C4—S1—C1—C2	-0.93 (11)	S1—C4—C5—O1	-3.55 (17)
S1—C1—C2—C3	0.86 (15)	C3—C4—C5—C6	-4.03 (19)
C1—C2—C3—C4	-0.29 (16)	S1—C4—C5—C6	175.70 (8)
C2—C3—C4—C5	179.34 (12)	O1—C5—C6—C7	6.42 (16)
C2—C3—C4—S1	-0.40 (14)	C4—C5—C6—C7	-172.82 (10)
C1—S1—C4—C3	0.75 (10)	C8—N1—C7—C6	-55.48 (14)
C1—S1—C4—C5	-179.02 (10)	C9—N1—C7—C6	-179.79 (11)
C3—C4—C5—O1	176.73 (13)	C5—C6—C7—N1	-172.73 (10)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the S1/C1–C4 ring.				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1N···Cl1	0.87 (1)	2.17 (1)	3.0317 (11)	171.(2)
C1—H1A···Cl1 ⁱ	0.95	2.82	3.5641 (13)	136.
C6—H6A…Cg1 ⁱⁱ	0.99	2.97	3.8183 (13)	144

Symmetry codes: (i) x+1/2, -y+1/2, z-1/2; (ii) x-3/2, -y-1/2, z-3/2.

Fig. 1

Fig. 2

